Prefixes are formed by combining one or more affixes for the power represented by the prefix, and an infix that shows if the exponent is positive or negative;
The symbols for the prefixes are the combination of the first letter of each digit affix, uppercase when the exponent is positive, lowercase when negative;
Alternatively, the symbols can be written as the exponent as a superscriptr sequence of digits, without any signal, for positive exponents, or as a subscriptr sequence of digits, without any signal, for negative exponents;
So, for each digit of the exponent, we will combine the following:
Digit | Affix | Positive Exponent Symbol | Negative Exponent Symbol | ||
---|---|---|---|---|---|
Letter | Superscript | Letter | Subscript | ||
0 | shun | Sdrv | 0drv | sdrv | 0drv |
1 | eka | Edrv | 1drv | edrv | 1drv |
2 | di | Ddrv | 2drv | ddrv | 2drv |
3 | tri | Tdrv | 3drv | tdrv | 3drv |
4 | cha | Cdrv | 4drv | cdrv | 4drv |
5 | pan | Pdrv | 5drv | pdrv | 5drv |
Positive Exponent Infix | Negative Exponent Infix |
---|---|
ma | ti |
Examples:
Positive Exponent | Prefix | Symbol | Negative Exponent | Prefix | Symbol |
---|---|---|---|---|---|
10+1 61 | ekamadravya | Edrv ; 1drv | 10−1 6−1 | ekatidravya | edrv ; 1drv |
10+2 62 | dimadravya | Ddrv ; 2drv | 10−2 6−2 | ditidravya | ddrv ; 2drv |
10+3 63 | trimadravya | Tdrv ; 3drv | 10−3 6−3 | tritidravya | tdrv ; 3drv |
10+4 64 | chamadravya | Cdrv ; 4drv | 10−4 6−4 | chatidravya | cdrv ; 4drv |
10+5 65 | panmadravya | Pdrv ; 5drv | 10−5 6−5 | pantidravya | pdrv ; 5drv |
10+10 66 | ekashunmadravya | ESdrv ; 10drv | 10−10 6−6 | ekashuntidravya | esdrv ; 10drv |
11+11 67 | ekaekamadravya | EEdrv ; 11drv | 11−11 6−7 | ekaekatidravya | eedrv ; 11drv |
12+12 68 | ekadimadravya | EDdrv ; 12drv | 12−12 6−8 | ekaditidravya | eddrv ; 12drv |
13+13 69 | ekatrimadravya | ETdrv ; 13drv | 13−13 6−9 | ekatritidravya | etdrv ; 13drv |
14+14 610 | ekachamadravya | ECdrv ; 14drv | 14−14 6−10 | ekachatidravya | ecdrv ; 14drv |
15+15 611 | ekapanmadravya | EPdrv ; 15drv | 15−15 6−11 | ekapantidravya | epdrv ; 15drv |
10+20 612 | dishunmadravya | DSdrv ; 20drv | 10−20 6−12 | dishuntidravya | dsdrv ; 20drv |
10+30 618 | trishunmadravya | TSdrv ; 30drv | 10−30 6−18 | trishuntidravya | tsdrv ; 30drv |
10+40 624 | chashunmadravya | CSdrv ; 40drv | 10−40 6−24 | chashuntidravya | csdrv ; 40drv |
10+50 630 | panshunmadravya | PSdrv ; 50drv | 10−50 6−30 | panshuntidravya | psdrv ; 50drv |
10+100 636 | ekashunshunmadravya | ESSdrv ; 100drv | 10−100 6−36 | ekashunshuntidravya | essdrv ; 100drv |
10+12,3450 611,190 | ekaditrichapanshunmadravya | EDTCPSdrv ; 12,3450drv | 10−12,3450 6−11,190 | ekaditrichapanshuntidravya | edtcpsdrv ; 12,3450drv |
Conversion to and from SI prefixes
Number Shastadari_Prefix Unit ↔ Number SI_Prefix Unit
Find the exponent for the Shastadari_Prefix, Shastadari_Exponent, and for the SI_Prefix, SI_Exponent;
With those two exponents, find the correspondent factor of conversion, using the following formulas:
Factor to SI | Factor from SI |
---|---|
10Shastadari_Exponent ÷ 14SI_Exponent 6Shastadari_Exponent ÷ 10SI_Exponent |
14SI_Exponent ÷ 10Shastadari_Exponent 10SI_Exponent ÷ 6Shastadari_Exponent |
Finally, multiply the original number by the calculated factor;
Since the SI prefixes are less granular, we can create a mapping for which Shastadari prefix can accommodate all the magnitude expressed by a SI prefix, or, in other words, which Shastadari prefix is roughly equivalent to which SI prefix:
Shastadari Prefixes to SI Prefixes
Shast. Prefix | SI Prefix | Factor to SI | Shast. Prefix | SI Prefix | Factor to SI |
---|---|---|---|---|---|
102 62 dima |
141 101 deca |
3.3̅ 3.6 [102 ÷ 141] [62 ÷ 101] [1 ÷ 0.14] |
10−2 6−2 diti |
14−1 10−1 deci |
0.14 0.27̅ [10−2 ÷ 14−1] [6−2 ÷ 10−1] [1 ÷ 3.6] |
103 63 trima |
142 102 hecto |
2.0̅5̅4̅3̅ ̅2̅ 2.16 [103 ÷ 142] [63 ÷ 102] [1 ÷ 0.244] |
10−3 6−3 triti |
14−2 10−2 centi |
0.244 0.4 6̅2̅9̅ [10−3 ÷ 14−2] [6−3 ÷ 10−2] [1 ÷ 2.16] |
104 64 chama |
143 103 kilo |
1.1435 3410… 1.296 [104 ÷ 143] [64 ÷ 103] [1 ÷ 0.4344] |
10−4 6−4 chati |
14−3 10−3 milli |
0.4344 0.7 7̅1̅6̅ ̅0̅4̅9̅ ̅3̅8̅2̅ [10−4 ÷ 14−3] [6−4 ÷ 10−3] [1 ÷ 1.296] |
1012 68 ekadima |
1410 106 mega |
1.4024 44055… 1.679 616 [1012 ÷ 1410] [68 ÷ 106] [1 ÷ 0.3323 3344] |
10−12 6−8 ekaditi |
14−10 10−6 micro |
0.3323 3344 0.595 374… [10−12 ÷ 14−10] [6−8 ÷ 10−6] [1 ÷ 1.679 616] |
1020 612 dishunma |
1413 109 giga |
2.1021 0354… 2.176 782 336 [1020 ÷ 1413] [612 ÷ 109] [1 ÷ 0.2431 2124 5344] |
10−20 6−12 dishunti |
14−13 10−9 nano |
0.2431 2124 5344 0.459 393… [10−20 ÷ 14−13] [6−12 ÷ 10−9] [1 ÷ 2.176 782 336] |
1024 616 trichama |
1420 1012 tera |
2.4532 0541… 2.821 109 907 456 [1024 ÷ 1420] [616 ÷ 1012] [1 ÷ 0.2043 2210 1030 1344] |
10−24 6−16 dichati |
14−20 10−12 pico |
0.2043 2210 1030 1344 0.354 470… [10−24 ÷ 14−20] [6−16 ÷ 10−12] [1 ÷ 2.821 109 907 456] |
1032 620 tridima |
1423 1015 peta |
3.3534 2142… 3.656 158 440 062 976 [1032 ÷ 1423] [620 ÷ 1015] [1 ÷ 0.1350 2453 3540 4331 3344] |
10−32 6−20 triditi |
14−23 10−15 femto |
0.1350 2453 3540 4331 3344 0.354 470… [10−32 ÷ 14−23] [6−20 ÷ 10−15] [1 ÷ 3.656 158 440 062 976] |
1040 624 chashunma |
1430 1018 exa |
4.4232 5353… 4.738 381 338 321 616 896 [1040 ÷ 1430] [624 ÷ 1018] [1 ÷ 0.1133 3022 2253 5553 0432 5344] |
10−40 6−24 chashunti |
14−30 10−18 atto |
0.1133 3022 2253 5553 0432 5344 0.354 470… [10−40 ÷ 14−30] [6−24 ÷ 10−18] [1 ÷ 4.738 381 338 321 616 896] |
As we can see, SI exponents’ increments of 3 correspond to Shastadari exponents’ increments of 4; from this point on, both systems have exponent equivalence in increments of 3, and the increment of 4 in Shastadari is shown only for the sake of symmetry; |
|||||
1043 627 chatrima |
1433 1021 zetta |
1.0050 2354… 1.023 490 369 077 469 249 536 [1043 ÷ 1433] [627 ÷ 1021] [1 ÷ 0.5510 1310 4230 4214 4111 3341 3440] |
10−43 6−27 chatriti |
14−33 10−21 zepto |
0.5510 1310 4230 4214 4111 3341 3440 0.977 048… [10−43 ÷ 14−33] [6−27 ÷ 10−21] [1 ÷ 1.023 490 369 077 469 249 536] |
1044 628 chachama |
1433 1021 zetta |
10.0502 3544… 6.140 942 214 464 815 497 216 [1044 ÷ 1433] [628 ÷ 1021] [1 ÷ 0.0551 0131 0423 0421 4411 1334 1344] |
10−44 6−28 chachati |
14−33 10−21 zepto |
0.0551 0131 0423 0421 4411 1334 1344 0.162 841… [10−44 ÷ 14−33] [6−28 ÷ 10−21] [1 ÷ 6.140 942 214 464 815 497 216] |
1051 631 panekama |
1440 1024 yotta |
1.1543 0231… 1.326 443 518 324 400 147 398 656 [1051 ÷ 1440] [631 ÷ 1024] [1 ÷ 0.4305 0143 1104 4014 2512 1511 0353 3440] |
10−51 6−31 panekati |
14−40 10−24 yocto |
0.4305 0143 1104 4014 2512 1511 0353 3440 0.753 895… [10−51 ÷ 14−40] [6−31 ÷ 10−24] [1 ÷ 1.326 443 518 324 400 147 398 656] |
1052 632 pandima |
1440 1024 yotta |
11.5430 2314… 7.958 661 109 946 400 884 391 936 [1052 ÷ 1440] [632 ÷ 1024] [1 ÷ 0.0430 5014 3110 4401 4251 2151 1035 3344] |
10−52 6−32 panditi |
14−40 10−24 yocto |
0.0430 5014 3110 4401 4251 2151 1035 3344 0.125 649… [10−52 ÷ 14−40] [6−32 ÷ 10−24] [1 ÷ 7.958 661 109 946 400 884 391 936] |
1055 635 panpanma |
1443 1027 ronna |
1.4151 5254… 1.719 070 799 748 422 591 028 658 176 [1055 ÷ 1443] [635 ÷ 1027] [1 ÷ 0.3253 5212 4330 0150 4302 3451 0125 1405 3440] |
10−55 6−35 panpanti |
14−43 10−27 ronto |
0.3253 5212 4330 0150 4302 3451 0125 1405 3440 0.581 709… [10−55 ÷ 14−43] [6−35 ÷ 10−27] [1 ÷ 1.719 070 799 748 422 591 028 658 176] |
10100 636 ekashunshunma |
1443 1027 ronna |
14.1515 2544… 10.314 424 798 490 535 546 171 949 056 [10100 ÷ 1443] [636 ÷ 1027] [1 ÷ 0.0325 3521 2433 0015 0430 2345 1012 5140 5344] |
10−100 6−36 ekashunshunti |
14−43 10−27 ronto |
0.0325 3521 2433 0015 0430 2345 1012 5140 5344 0.096 951… [10−100 ÷ 14−43] [6−36 ÷ 10−27] [1 ÷ 10.314 424 798 490 535 546 171 949 056] |
10103 639 ekashuntrima |
1450 1030 quetta |
2.1211 2134… 2.227 915 756 473 955 677 973 140 996 096 [10103 ÷ 1450] [639 ÷ 1030] [1 ÷ 0.2405 4131 3523 5323 3012 0111 0213 0402 0421 3440] |
10−103 6−39 ekashuntriti |
14−50 10−30 quecto |
0.2405 4131 3523 5323 3012 0111 0213 0402 0421 3440 0.448 850… [10−103 ÷ 14−50] [6−39 ÷ 10−30] [1 ÷ 2.227 915 756 473 955 677 973 140 996 096] |
10104 640 ekashunchama |
1450 1030 quetta |
21.2112 1345… 13.367 494 538 843 734 067 838 845 976 576 [10104 ÷ 1450] [640 ÷ 1030] [1 ÷ 0.0240 5413 1352 3532 3301 2011 1021 3040 2042 1344] |
10−104 6−40 ekashunchati |
14−50 10−30 quecto |
0.0240 5413 1352 3532 3301 2011 1021 3040 2042 1344 0.074 808… [10−104 ÷ 14−50] [6−40 ÷ 10−30] [1 ÷ 13.367 494 538 843 734 067 838 845 976 576] |
SI Prefixes to Shastadari Prefixes
SI Prefix | Shast. Prefix | Factor to Shastadari | SI Prefix | Shast. Prefix | Factor to Shastadari |
---|---|---|---|---|---|
141 101 deca |
102 62 dima |
0.14 0.27̅ [10−2 ÷ 14−1] [6−2 ÷ 10−1] [1 ÷ 3.6] |
14−1 10−1 deci |
10−2 6−2 diti |
3.3̅ 3.6 [102 ÷ 141] [62 ÷ 101] [1 ÷ 0.14] |
142 102 hecto |
103 63 trima |
0.244 0.4 6̅2̅9̅ [10−3 ÷ 14−2] [6−3 ÷ 10−2] [1 ÷ 2.16] |
14−2 10−2 centi |
10−3 6−3 triti |
2.0̅5̅4̅3̅ ̅2̅ 2.16 [103 ÷ 142] [63 ÷ 102] [1 ÷ 0.244] |
143 103 kilo |
104 64 chama |
0.4344 0.7 7̅1̅6̅ ̅0̅4̅9̅ ̅3̅8̅2̅ [10−4 ÷ 14−3] [6−4 ÷ 10−3] [1 ÷ 1.296] |
14−3 10−3 milli |
10−4 6−4 chati |
1.1435 3410… 1.296 [104 ÷ 143] [64 ÷ 103] [1 ÷ 0.4344] |
1410 106 mega |
1012 68 ekadima |
0.3323 3344 0.595 374… [10−12 ÷ 14−10] [6−8 ÷ 10−6] [1 ÷ 1.679 616] |
14−10 10−6 micro |
10−12 6−8 ekaditi |
1.4024 44055… 1.679 616 [1012 ÷ 1410] [68 ÷ 106] [1 ÷ 0.3323 3344] |
1413 109 giga |
1020 612 dishunma |
0.2431 2124 5344 0.459 393… [10−20 ÷ 14−13] [6−12 ÷ 10−9] [1 ÷ 2.176 782 336] |
14−13 10−9 nano |
10−20 6−12 dishunti |
2.1021 0354… 2.176 782 336 [1020 ÷ 1413] [612 ÷ 109] [1 ÷ 0.2431 2124 5344] |
1420 1012 tera |
1024 616 trichama |
0.2043 2210 1030 1344 0.354 470… [10−24 ÷ 14−20] [6−16 ÷ 10−12] [1 ÷ 2.821 109 907 456] |
14−20 10−12 pico |
10−24 6−16 dichati |
2.4532 0541… 2.821 109 907 456 [1024 ÷ 1420] [616 ÷ 1012] [1 ÷ 0.2043 2210 1030 1344] |
1423 1015 peta |
1032 620 tridima |
0.1350 2453 3540 4331 3344 0.354 470… [10−32 ÷ 14−23] [6−20 ÷ 10−15] [1 ÷ 3.656 158 440 062 976] |
14−23 10−15 femto |
10−32 6−20 triditi |
3.3534 2142… 3.656 158 440 062 976 [1032 ÷ 1423] [620 ÷ 1015] [1 ÷ 0.1350 2453 3540 4331 3344] |
1430 1018 exa |
1040 624 chashunma |
0.1133 3022 2253 5553 0432 5344 0.354 470… [10−40 ÷ 14−30] [6−24 ÷ 10−18] [1 ÷ 4.738 381 338 321 616 896] |
14−30 10−18 atto |
10−40 6−24 chashunti |
4.4232 5353… 4.738 381 338 321 616 896 [1040 ÷ 1430] [624 ÷ 1018] [1 ÷ 0.1133 3022 2253 5553 0432 5344] |
As we can see, SI exponents’ increments of 3 correspond to Shastadari exponents’ increments of 4; from this point on, both systems have exponent equivalence in increments of 3, and the increment of 4 in Shastadari is shown only for the sake of symmetry; |
|||||
1433 1021 zetta |
1043 627 chatrima |
0.5510 1310 4230 4214 4111 3341 3440 0.977 048… [10−43 ÷ 14−33] [6−27 ÷ 10−21] [1 ÷ 1.023 490 369 077 469 249 536] |
14−33 10−21 zepto |
10−43 6−27 chatriti |
1.0050 2354… 1.023 490 369 077 469 249 536 [1043 ÷ 1433] [627 ÷ 1021] [1 ÷ 0.5510 1310 4230 4214 4111 3341 3440] |
1433 1021 zetta |
1044 628 chachama |
0.0551 0131 0423 0421 4411 1334 1344 0.162 841… [10−44 ÷ 14−33] [6−28 ÷ 10−21] [1 ÷ 6.140 942 214 464 815 497 216] |
14−33 10−21 zepto |
10−44 6−28 chachati |
10.0502 3544… 6.140 942 214 464 815 497 216 [1044 ÷ 1433] [628 ÷ 1021] [1 ÷ 0.0551 0131 0423 0421 4411 1334 1344] |
1440 1024 yotta |
1051 631 panekama |
0.4305 0143 1104 4014 2512 1511 0353 3440 0.753 895… [10−51 ÷ 14−40] [6−31 ÷ 10−24] [1 ÷ 1.326 443 518 324 400 147 398 656] |
14−40 10−24 yocto |
10−51 6−31 panekati |
1.1543 0231… 1.326 443 518 324 400 147 398 656 [1051 ÷ 1440] [631 ÷ 1024] [1 ÷ 0.4305 0143 1104 4014 2512 1511 0353 3440] |
1440 1024 yotta |
1052 632 pandima |
0.0430 5014 3110 4401 4251 2151 1035 3344 0.125 649… [10−52 ÷ 14−40] [6−32 ÷ 10−24] [1 ÷ 7.958 661 109 946 400 884 391 936] |
14−40 10−24 yocto |
10−52 6−32 panditi |
11.5430 2314… 7.958 661 109 946 400 884 391 936 [1052 ÷ 1440] [632 ÷ 1024] [1 ÷ 0.0430 5014 3110 4401 4251 2151 1035 3344] |
1443 1027 ronna |
1055 635 panpanma |
0.3253 5212 4330 0150 4302 3451 0125 1405 3440 0.581 709… [10−55 ÷ 14−43] [6−35 ÷ 10−27] [1 ÷ 1.719 070 799 748 422 591 028 658 176] |
14−43 10−27 ronto |
10−55 6−35 panpanti |
1.4151 5254… 1.719 070 799 748 422 591 028 658 176 [1055 ÷ 1443] [635 ÷ 1027] [1 ÷ 0.3253 5212 4330 0150 4302 3451 0125 1405 3440] |
1443 1027 ronna |
10100 636 ekashunshunma |
0.0325 3521 2433 0015 0430 2345 1012 5140 5344 0.096 951… [10−100 ÷ 14−43] [6−36 ÷ 10−27] [1 ÷ 10.314 424 798 490 535 546 171 949 056] |
14−43 10−27 ronto |
10−100 6−36 ekashunshunti |
14.1515 2544… 10.314 424 798 490 535 546 171 949 056 [10100 ÷ 1443] [636 ÷ 1027] [1 ÷ 0.0325 3521 2433 0015 0430 2345 1012 5140 5344] |
1450 1030 quetta |
10103 639 ekashuntrima |
0.2405 4131 3523 5323 3012 0111 0213 0402 0421 3440 0.448 850… [10−103 ÷ 14−50] [6−39 ÷ 10−30] [1 ÷ 2.227 915 756 473 955 677 973 140 996 096] |
14−50 10−30 quecto |
10−103 6−39 ekashuntriti |
2.1211 2134… 2.227 915 756 473 955 677 973 140 996 096 [10103 ÷ 1450] [639 ÷ 1030] [1 ÷ 0.2405 4131 3523 5323 3012 0111 0213 0402 0421 3440] |
1450 1030 quetta |
10104 640 ekashunchama |
0.0240 5413 1352 3532 3301 2011 1021 3040 2042 1344 0.074 808… [10−104 ÷ 14−50] [6−40 ÷ 10−30] [1 ÷ 13.367 494 538 843 734 067 838 845 976 576] |
14−50 10−30 quecto |
10−104 6−40 ekashunchati |
21.2112 1345… 13.367 494 538 843 734 067 838 845 976 576 [10104 ÷ 1450] [640 ÷ 1030] [1 ÷ 0.0240 5413 1352 3532 3301 2011 1021 3040 2042 1344] |