Shastadari

1. Prefixes

Prefixes are formed by combining one or more affixes for the power represented by the prefix, and an infix that shows if the exponent is positive or negative;

The symbols for the prefixes are the combination of the first letter of each digit affix, uppercase when the exponent is positive, lowercase when negative;

Alternatively, the symbols can be written as the exponent as a superscriptr sequence of digits, without any signal, for positive exponents, or as a subscriptr sequence of digits, without any signal, for negative exponents;

So, for each digit of the exponent, we will combine the following:

Digit Affix Positive Exponent Symbol Negative Exponent Symbol
Letter Superscript Letter Subscript
0 shun Sdrv 0drv sdrv 0drv
1 eka Edrv 1drv edrv 1drv
2 di Ddrv 2drv ddrv 2drv
3 tri Tdrv 3drv tdrv 3drv
4 cha Cdrv 4drv cdrv 4drv
5 pan Pdrv 5drv pdrv 5drv

Positive Exponent Infix Negative Exponent Infix
ma ti

Examples:

Positive Exponent Prefix Symbol Negative Exponent Prefix Symbol
10+1 61 ekamadravya Edrv ; 1drv 101 6−1 ekatidravya edrv ; 1drv
10+2 62 dimadravya Ddrv ; 2drv 102 6−2 ditidravya ddrv ; 2drv
10+3 63 trimadravya Tdrv ; 3drv 103 6−3 tritidravya tdrv ; 3drv
10+4 64 chamadravya Cdrv ; 4drv 104 6−4 chatidravya cdrv ; 4drv
10+5 65 panmadravya Pdrv ; 5drv 105 6−5 pantidravya pdrv ; 5drv
10+10 66 ekashunmadravya ESdrv ; 10drv 1010 6−6 ekashuntidravya esdrv ; 10drv
11+11 67 ekaekamadravya EEdrv ; 11drv 1111 6−7 ekaekatidravya eedrv ; 11drv
12+12 68 ekadimadravya EDdrv ; 12drv 1212 6−8 ekaditidravya eddrv ; 12drv
13+13 69 ekatrimadravya ETdrv ; 13drv 1313 6−9 ekatritidravya etdrv ; 13drv
14+14 610 ekachamadravya ECdrv ; 14drv 1414 6−10 ekachatidravya ecdrv ; 14drv
15+15 611 ekapanmadravya EPdrv ; 15drv 1515 6−11 ekapantidravya epdrv ; 15drv
10+20 612 dishunmadravya DSdrv ; 20drv 1020 6−12 dishuntidravya dsdrv ; 20drv
10+30 618 trishunmadravya TSdrv ; 30drv 1030 6−18 trishuntidravya tsdrv ; 30drv
10+40 624 chashunmadravya CSdrv ; 40drv 1040 6−24 chashuntidravya csdrv ; 40drv
10+50 630 panshunmadravya PSdrv ; 50drv 1050 6−30 panshuntidravya psdrv ; 50drv
10+100 636 ekashunshunmadravya ESSdrv ; 100drv 10100 6−36 ekashunshuntidravya essdrv ; 100drv
10+12,3450 611,190 ekaditrichapanshunmadravya EDTCPSdrv ; 12,3450drv 1012,3450 6−11,190 ekaditrichapanshuntidravya edtcpsdrv ; 12,3450drv

Conversion to and from SI prefixes

Number Shastadari_Prefix Unit ↔ Number SI_Prefix Unit

Find the exponent for the Shastadari_Prefix, Shastadari_Exponent, and for the SI_Prefix, SI_Exponent;

With those two exponents, find the correspondent factor of conversion, using the following formulas:

Factor to SI Factor from SI
10Shastadari_Exponent ÷ 14SI_Exponent
6Shastadari_Exponent ÷ 10SI_Exponent
14SI_Exponent ÷ 10Shastadari_Exponent
10SI_Exponent ÷ 6Shastadari_Exponent

Finally, multiply the original number by the calculated factor;

Since the SI prefixes are less granular, we can create a mapping for which Shastadari prefix can accommodate all the magnitude expressed by a SI prefix, or, in other words, which Shastadari prefix is roughly equivalent to which SI prefix:

Shastadari Prefixes to SI Prefixes

Shast. Prefix SI Prefix Factor to SI Shast. Prefix SI Prefix Factor to SI
102 62
dima
141 101
deca
3.3̅
3.6
[102 ÷ 141] [62 ÷ 101]
[1 ÷ 0.14]
10−2 6−2
diti
14−1 10−1
deci
0.14
0.27̅
[10−2 ÷ 14−1] [6−2 ÷ 10−1]
[1 ÷ 3.6]
103 63
trima
142 102
hecto
2.0̅5̅4̅3̅ ̅2̅
2.16
[103 ÷ 142] [63 ÷ 102]
[1 ÷ 0.244]
10−3 6−3
triti
14−2 10−2
centi
0.244
0.4 6̅2̅9̅
[10−3 ÷ 14−2] [6−3 ÷ 10−2]
[1 ÷ 2.16]
104 64
chama
143 103
kilo
1.1435 3410…
1.296
[104 ÷ 143] [64 ÷ 103]
[1 ÷ 0.4344]
10−4 6−4
chati
14−3 10−3
milli
0.4344
0.7 7̅1̅6̅ ̅0̅4̅9̅ ̅3̅8̅2̅
[10−4 ÷ 14−3] [6−4 ÷ 10−3]
[1 ÷ 1.296]
1012 68
ekadima
1410 106
mega
1.4024 44055…
1.679 616
[1012 ÷ 1410] [68 ÷ 106]
[1 ÷ 0.3323 3344]
10−12 6−8
ekaditi
14−10 10−6
micro
0.3323 3344
0.595 374…
[10−12 ÷ 14−10] [6−8 ÷ 10−6]
[1 ÷ 1.679 616]
1020 612
dishunma
1413 109
giga
2.1021 0354…
2.176 782 336
[1020 ÷ 1413] [612 ÷ 109]
[1 ÷ 0.2431 2124 5344]
10−20 6−12
dishunti
14−13 10−9
nano
0.2431 2124 5344
0.459 393…
[10−20 ÷ 14−13] [6−12 ÷ 10−9]
[1 ÷ 2.176 782 336]
1024 616
trichama
1420 1012
tera
2.4532 0541…
2.821 109 907 456
[1024 ÷ 1420] [616 ÷ 1012]
[1 ÷ 0.2043 2210 1030 1344]
10−24 6−16
dichati
14−20 10−12
pico
0.2043 2210 1030 1344
0.354 470…
[10−24 ÷ 14−20] [6−16 ÷ 10−12]
[1 ÷ 2.821 109 907 456]
1032 620
tridima
1423 1015
peta
3.3534 2142…
3.656 158 440 062 976
[1032 ÷ 1423] [620 ÷ 1015]
[1 ÷ 0.1350 2453 3540 4331 3344]
10−32 6−20
triditi
14−23 10−15
femto
0.1350 2453 3540 4331 3344
0.354 470…
[10−32 ÷ 14−23] [6−20 ÷ 10−15]
[1 ÷ 3.656 158 440 062 976]
1040 624
chashunma
1430 1018
exa
4.4232 5353…
4.738 381 338 321 616 896
[1040 ÷ 1430] [624 ÷ 1018]
[1 ÷ 0.1133 3022 2253 5553 0432 5344]
10−40 6−24
chashunti
14−30 10−18
atto
0.1133 3022 2253 5553 0432 5344
0.354 470…
[10−40 ÷ 14−30] [6−24 ÷ 10−18]
[1 ÷ 4.738 381 338 321 616 896]
As we can see, SI exponents’ increments of 3 correspond to Shastadari exponents’ increments of 4; from this point on, both systems
have exponent equivalence in increments of 3, and the increment of 4 in Shastadari is shown only for the sake of symmetry;
1043 627
chatrima
1433 1021
zetta
1.0050 2354…
1.023 490 369 077 469 249 536
[1043 ÷ 1433] [627 ÷ 1021]
[1 ÷ 0.5510 1310 4230 4214 4111 3341 3440]
10−43 6−27
chatriti
14−33 10−21
zepto
0.5510 1310 4230 4214 4111 3341 3440
0.977 048…
[10−43 ÷ 14−33] [6−27 ÷ 10−21]
[1 ÷ 1.023 490 369 077 469 249 536]
1044 628
chachama
1433 1021
zetta
10.0502 3544…
6.140 942 214 464 815 497 216
[1044 ÷ 1433] [628 ÷ 1021]
[1 ÷ 0.0551 0131 0423 0421 4411 1334 1344]
10−44 6−28
chachati
14−33 10−21
zepto
0.0551 0131 0423 0421 4411 1334 1344
0.162 841…
[10−44 ÷ 14−33] [6−28 ÷ 10−21]
[1 ÷ 6.140 942 214 464 815 497 216]
1051 631
panekama
1440 1024
yotta
1.1543 0231…
1.326 443 518 324 400 147 398 656
[1051 ÷ 1440] [631 ÷ 1024]
[1 ÷ 0.4305 0143 1104 4014 2512 1511 0353 3440]
10−51 6−31
panekati
14−40 10−24
yocto
0.4305 0143 1104 4014 2512 1511 0353 3440
0.753 895…
[10−51 ÷ 14−40] [6−31 ÷ 10−24]
[1 ÷ 1.326 443 518 324 400 147 398 656]
1052 632
pandima
1440 1024
yotta
11.5430 2314…
7.958 661 109 946 400 884 391 936
[1052 ÷ 1440] [632 ÷ 1024]
[1 ÷ 0.0430 5014 3110 4401 4251 2151 1035 3344]
10−52 6−32
panditi
14−40 10−24
yocto
0.0430 5014 3110 4401 4251 2151 1035 3344
0.125 649…
[10−52 ÷ 14−40] [6−32 ÷ 10−24]
[1 ÷ 7.958 661 109 946 400 884 391 936]
1055 635
panpanma
1443 1027
ronna
1.4151 5254…
1.719 070 799 748 422 591 028 658 176
[1055 ÷ 1443] [635 ÷ 1027]
[1 ÷ 0.3253 5212 4330 0150 4302 3451 0125 1405 3440]
10−55 6−35
panpanti
14−43 10−27
ronto
0.3253 5212 4330 0150 4302 3451 0125 1405 3440
0.581 709…
[10−55 ÷ 14−43] [6−35 ÷ 10−27]
[1 ÷ 1.719 070 799 748 422 591 028 658 176]
10100 636
ekashunshunma
1443 1027
ronna
14.1515 2544…
10.314 424 798 490 535 546 171 949 056
[10100 ÷ 1443] [636 ÷ 1027]
[1 ÷ 0.0325 3521 2433 0015 0430 2345 1012 5140 5344]
10−100 6−36
ekashunshunti
14−43 10−27
ronto
0.0325 3521 2433 0015 0430 2345 1012 5140 5344
0.096 951…
[10−100 ÷ 14−43] [6−36 ÷ 10−27]
[1 ÷ 10.314 424 798 490 535 546 171 949 056]
10103 639
ekashuntrima
1450 1030
quetta
2.1211 2134…
2.227 915 756 473 955 677 973 140 996 096
[10103 ÷ 1450] [639 ÷ 1030]
[1 ÷ 0.2405 4131 3523 5323 3012 0111 0213 0402 0421 3440]
10−103 6−39
ekashuntriti
14−50 10−30
quecto
0.2405 4131 3523 5323 3012 0111 0213 0402 0421 3440
0.448 850…
[10−103 ÷ 14−50] [6−39 ÷ 10−30]
[1 ÷ 2.227 915 756 473 955 677 973 140 996 096]
10104 640
ekashunchama
1450 1030
quetta
21.2112 1345…
13.367 494 538 843 734 067 838 845 976 576
[10104 ÷ 1450] [640 ÷ 1030]
[1 ÷ 0.0240 5413 1352 3532 3301 2011 1021 3040 2042 1344]
10−104 6−40
ekashunchati
14−50 10−30
quecto
0.0240 5413 1352 3532 3301 2011 1021 3040 2042 1344
0.074 808…
[10−104 ÷ 14−50] [6−40 ÷ 10−30]
[1 ÷ 13.367 494 538 843 734 067 838 845 976 576]

SI Prefixes to Shastadari Prefixes

SI Prefix Shast. Prefix Factor to Shastadari SI Prefix Shast. Prefix Factor to Shastadari
141 101
deca
102 62
dima
0.14
0.27̅
[10−2 ÷ 14−1] [6−2 ÷ 10−1]
[1 ÷ 3.6]
14−1 10−1
deci
10−2 6−2
diti
3.3̅
3.6
[102 ÷ 141] [62 ÷ 101]
[1 ÷ 0.14]
142 102
hecto
103 63
trima
0.244
0.4 6̅2̅9̅
[10−3 ÷ 14−2] [6−3 ÷ 10−2]
[1 ÷ 2.16]
14−2 10−2
centi
10−3 6−3
triti
2.0̅5̅4̅3̅ ̅2̅
2.16
[103 ÷ 142] [63 ÷ 102]
[1 ÷ 0.244]
143 103
kilo
104 64
chama
0.4344
0.7 7̅1̅6̅ ̅0̅4̅9̅ ̅3̅8̅2̅
[10−4 ÷ 14−3] [6−4 ÷ 10−3]
[1 ÷ 1.296]
14−3 10−3
milli
10−4 6−4
chati
1.1435 3410…
1.296
[104 ÷ 143] [64 ÷ 103]
[1 ÷ 0.4344]
1410 106
mega
1012 68
ekadima
0.3323 3344
0.595 374…
[10−12 ÷ 14−10] [6−8 ÷ 10−6]
[1 ÷ 1.679 616]
14−10 10−6
micro
10−12 6−8
ekaditi
1.4024 44055…
1.679 616
[1012 ÷ 1410] [68 ÷ 106]
[1 ÷ 0.3323 3344]
1413 109
giga
1020 612
dishunma
0.2431 2124 5344
0.459 393…
[10−20 ÷ 14−13] [6−12 ÷ 10−9]
[1 ÷ 2.176 782 336]
14−13 10−9
nano
10−20 6−12
dishunti
2.1021 0354…
2.176 782 336
[1020 ÷ 1413] [612 ÷ 109]
[1 ÷ 0.2431 2124 5344]
1420 1012
tera
1024 616
trichama
0.2043 2210 1030 1344
0.354 470…
[10−24 ÷ 14−20] [6−16 ÷ 10−12]
[1 ÷ 2.821 109 907 456]
14−20 10−12
pico
10−24 6−16
dichati
2.4532 0541…
2.821 109 907 456
[1024 ÷ 1420] [616 ÷ 1012]
[1 ÷ 0.2043 2210 1030 1344]
1423 1015
peta
1032 620
tridima
0.1350 2453 3540 4331 3344
0.354 470…
[10−32 ÷ 14−23] [6−20 ÷ 10−15]
[1 ÷ 3.656 158 440 062 976]
14−23 10−15
femto
10−32 6−20
triditi
3.3534 2142…
3.656 158 440 062 976
[1032 ÷ 1423] [620 ÷ 1015]
[1 ÷ 0.1350 2453 3540 4331 3344]
1430 1018
exa
1040 624
chashunma
0.1133 3022 2253 5553 0432 5344
0.354 470…
[10−40 ÷ 14−30] [6−24 ÷ 10−18]
[1 ÷ 4.738 381 338 321 616 896]
14−30 10−18
atto
10−40 6−24
chashunti
4.4232 5353…
4.738 381 338 321 616 896
[1040 ÷ 1430] [624 ÷ 1018]
[1 ÷ 0.1133 3022 2253 5553 0432 5344]
As we can see, SI exponents’ increments of 3 correspond to Shastadari exponents’ increments of 4; from this point on, both systems
have exponent equivalence in increments of 3, and the increment of 4 in Shastadari is shown only for the sake of symmetry;
1433 1021
zetta
1043 627
chatrima
0.5510 1310 4230 4214 4111 3341 3440
0.977 048…
[10−43 ÷ 14−33] [6−27 ÷ 10−21]
[1 ÷ 1.023 490 369 077 469 249 536]
14−33 10−21
zepto
10−43 6−27
chatriti
1.0050 2354…
1.023 490 369 077 469 249 536
[1043 ÷ 1433] [627 ÷ 1021]
[1 ÷ 0.5510 1310 4230 4214 4111 3341 3440]
1433 1021
zetta
1044 628
chachama
0.0551 0131 0423 0421 4411 1334 1344
0.162 841…
[10−44 ÷ 14−33] [6−28 ÷ 10−21]
[1 ÷ 6.140 942 214 464 815 497 216]
14−33 10−21
zepto
10−44 6−28
chachati
10.0502 3544…
6.140 942 214 464 815 497 216
[1044 ÷ 1433] [628 ÷ 1021]
[1 ÷ 0.0551 0131 0423 0421 4411 1334 1344]
1440 1024
yotta
1051 631
panekama
0.4305 0143 1104 4014 2512 1511 0353 3440
0.753 895…
[10−51 ÷ 14−40] [6−31 ÷ 10−24]
[1 ÷ 1.326 443 518 324 400 147 398 656]
14−40 10−24
yocto
10−51 6−31
panekati
1.1543 0231…
1.326 443 518 324 400 147 398 656
[1051 ÷ 1440] [631 ÷ 1024]
[1 ÷ 0.4305 0143 1104 4014 2512 1511 0353 3440]
1440 1024
yotta
1052 632
pandima
0.0430 5014 3110 4401 4251 2151 1035 3344
0.125 649…
[10−52 ÷ 14−40] [6−32 ÷ 10−24]
[1 ÷ 7.958 661 109 946 400 884 391 936]
14−40 10−24
yocto
10−52 6−32
panditi
11.5430 2314…
7.958 661 109 946 400 884 391 936
[1052 ÷ 1440] [632 ÷ 1024]
[1 ÷ 0.0430 5014 3110 4401 4251 2151 1035 3344]
1443 1027
ronna
1055 635
panpanma
0.3253 5212 4330 0150 4302 3451 0125 1405 3440
0.581 709…
[10−55 ÷ 14−43] [6−35 ÷ 10−27]
[1 ÷ 1.719 070 799 748 422 591 028 658 176]
14−43 10−27
ronto
10−55 6−35
panpanti
1.4151 5254…
1.719 070 799 748 422 591 028 658 176
[1055 ÷ 1443] [635 ÷ 1027]
[1 ÷ 0.3253 5212 4330 0150 4302 3451 0125 1405 3440]
1443 1027
ronna
10100 636
ekashunshunma
0.0325 3521 2433 0015 0430 2345 1012 5140 5344
0.096 951…
[10−100 ÷ 14−43] [6−36 ÷ 10−27]
[1 ÷ 10.314 424 798 490 535 546 171 949 056]
14−43 10−27
ronto
10−100 6−36
ekashunshunti
14.1515 2544…
10.314 424 798 490 535 546 171 949 056
[10100 ÷ 1443] [636 ÷ 1027]
[1 ÷ 0.0325 3521 2433 0015 0430 2345 1012 5140 5344]
1450 1030
quetta
10103 639
ekashuntrima
0.2405 4131 3523 5323 3012 0111 0213 0402 0421 3440
0.448 850…
[10−103 ÷ 14−50] [6−39 ÷ 10−30]
[1 ÷ 2.227 915 756 473 955 677 973 140 996 096]
14−50 10−30
quecto
10−103 6−39
ekashuntriti
2.1211 2134…
2.227 915 756 473 955 677 973 140 996 096
[10103 ÷ 1450] [639 ÷ 1030]
[1 ÷ 0.2405 4131 3523 5323 3012 0111 0213 0402 0421 3440]
1450 1030
quetta
10104 640
ekashunchama
0.0240 5413 1352 3532 3301 2011 1021 3040 2042 1344
0.074 808…
[10−104 ÷ 14−50] [6−40 ÷ 10−30]
[1 ÷ 13.367 494 538 843 734 067 838 845 976 576]
14−50 10−30
quecto
10−104 6−40
ekashunchati
21.2112 1345…
13.367 494 538 843 734 067 838 845 976 576
[10104 ÷ 1450] [640 ÷ 1030]
[1 ÷ 0.0240 5413 1352 3532 3301 2011 1021 3040 2042 1344]